Rolling Systems and Their Billiard Limits
نویسندگان
چکیده
Billiard systems, broadly speaking, may be regarded as models of mechanical systems in which rigid parts interact through elastic impulsive (collision) forces. When it is desired or necessary to account for linear/angular momentum exchange collisions involving a spherical body, type billiard system often referred no-slip has been used. In recent work, become apparent that billiards resemble non-holonomic number ways. Based on an idea by Borisov, Kilin and Mamaev, we show very generally arise limits (rolling) way akin how ordinary geodesic flows flattening the Riemannian manifold.
منابع مشابه
investigation of single-user and multi-user detection methods in mc-cdma systems and comparison of their performances
در این پایان نامه به بررسی روش های آشکارسازی در سیستم های mc-cdma می پردازیم. با توجه به ماهیت آشکارسازی در این سیستم ها، تکنیک های آشکارسازی را می توان به دو دسته ی اصلی تقسیم نمود: آشکارسازی سیگنال ارسالی یک کاربر مطلوب بدون در نظر گرفتن اطلاعاتی در مورد سایر کاربران تداخل کننده که از آن ها به عنوان آشکارساز های تک کاربره یاد می شود و همچنین آشکارسازی سیگنال ارسالی همه ی کاربران فعال موجود در...
Thermoelectric transport in billiard systems
We discuss the thermoelectric (TE) transport in billiard systems of interacting particles, coupled to stochastic particle reservoirs. Recently in [1], analytical exact expressions for the TE transport of noninteracting gases of polyatomic molecules were obtained, and a novel microscopic mechanism for the increase of thermoelectric efficiency described. After briefly reviewing the derivation of ...
متن کاملComplex Billiard Hamiltonian Systems and Nonlinear Waves
There is a deep connection between solutions of nonlinear equations and both geodesic flows and billiards on Riemannian manifolds. For example, in Alber, Camassa, Holm and Marsden [1995], a link between umbilic geodesics and billiards on n-dimensional quadrics and new soliton-like solutions of nonlinear equations in the Dym hierarchy was investigated. The geodesic flows provide the spatial x-fl...
متن کاملSwitched flow systems: pseudo billiard dynamics
We study a class of dynamical systems which generalizes and unifies some models arising in the analysis of switched flow systems in manufacturing. General properties of these dynamical systems, called pseudo billiards, as well as some their perturbations are discussed.
متن کاملBroken ergodicity of right triangular billiard systems
A right triangular billiard system is equivalent to the system of two colliding particles confined in a one-dimensional box. In spite of their seeming simplicity, no definite conclusion has been drawn so far concerning their ergodic properties. To answer this question, we transform the dynamics of the right triangular billiard system to a piecewise map and analytically prove the broken ergodici...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Regular & Chaotic Dynamics
سال: 2021
ISSN: ['1468-4845', '1560-3547']
DOI: https://doi.org/10.1134/s1560354721010019